Learn Trigonometry Simple and Complex Formulas

Learn all Trigonometry formulas in one place, including simple and complex formulas suitable for school and college-level mathematics.

1.2 Pythagorean Identities

Type Formula
Identity 1 `\sin^2(\theta) + \cos^2(\theta) = 1`
Identity 2 `1 + \tan^2(\theta) = \sec^2(\theta)`
Identity 3 `1 + \cot^2(\theta) = \csc^2(\theta)`

1.3 Basic Angle Identities

Identities Formula
Sine Angle Sum `\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)`
Sine Angle Difference `\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)`
Cosine Angle Sum `\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)`
Cosine Angle Difference `\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)`
Tangent Angle Sum `\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}`
Tangent Angle Difference `\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}`

1.4 Complementary Angle Identities

Complement of: Formula
Sine `\sin(90^\circ - \theta) = \cos(\theta)`
Cosine `\cos(90^\circ - \theta) = \sin(\theta)`
Tangent `\tan(90^\circ - \theta) = \cot(\theta)`
Cotangent `\cot(90^\circ - \theta) = \tan(\theta)`
Secant `\sec(90^\circ - \theta) = \csc(\theta)`
Cosecant `\csc(90^\circ - \theta) = \sec(\theta)`

2. Medium Level (Intermediate Trigonometry Formulas)

2.1 Double Angle Formulas

Angle Formula
`\sin(2\theta) =` ` 2\sin(\theta)\cos(\theta) `
`\cos(2\theta) = ` `\cos^2(\theta) - \sin^2(\theta)`,
`2\cos^2(\theta) - 1`,
`1 - 2\sin^2(\theta) `
`\tan(2\theta) = ` `\frac{2\tan(\theta)}{1 - \tan^2(\theta)} `

2.2 Half Angle Formulas

Type Formula
Sine `\sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}} `
Cosine `\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}} `
Tangent `\tan\left(\frac{\theta}{2}\right) = +-sqrt((1-cos \theta)/(1+cos \theta)) = \frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{1 - \cos(\theta)}{\sin(\theta)} `



2.3 Product-to-Sum Identities

Type Formula
Product-to-Sum Identity 1 `\(\sin(a) \sin(b) = \frac{1}{2} [\cos(a - b) - \cos(a + b)]\)`
Product-to-Sum Identity 2 `\(\cos(a) \cos(b) = \frac{1}{2} [\cos(a - b) + \cos(a + b)]\)`
Product-to-Sum Identity 3 `\(\sin(a) \cos(b) = \frac{1}{2} [\sin(a + b) + \sin(a - b)]\)`

2.4 Sum-to-Product Identities

Type Formula
Sum-to-Product Identity 1 `\(\sin(a) + \sin(b) = 2 \sin\left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right)\)`
Sum-to-Product Identity 2 `\(\sin(a) - \sin(b) = 2 \cos\left(\frac{a + b}{2}\right) \sin\left(\frac{a - b}{2}\right)\)`
Sum-to-Product Identity 3 `\(\cos(a) + \cos(b) = 2 \cos\left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right)\)`
Sum-to-Product Identity 4 `\(\cos(a) - \cos(b) = -2 \sin\left(\frac{a + b}{2}\right) \sin\left(\frac{a - b}{2}\right)\)`

2.5 Inverse Trigonometric Relationships

Type Formula
Inverse Sine Relationship `\(\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}\)`
Inverse Tangent Relationship `\(\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}\)`
Inverse Secant Relationship `\(\sec^{-1}(x) + \csc^{-1}(x) = \frac{\pi}{2}\)`
Function Relationship Domain
Inverse Sine `\(\sin^{-1}(\sin x) = x\)` `\(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\)`
Inverse Cosine `\(\cos^{-1}(\cos x) = x\)` `\(0 \leq x \leq \pi\)`
Inverse Tangent `\(\tan^{-1}(\tan x) = x\)` `\(-\frac{\pi}{2} lt x lt \frac{\pi}{2}\)`

3. Complex and High-Level Trigonometry

3.1 Laws of Trigonometry (Triangles)

Law Formula Description
Law of Sines `\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\)` Relates the sides of a triangle to the sines of its angles.
Law of Cosines `\(c^2 = a^2 + b^2 - 2ab \cos C\)` Relates the lengths of the sides of a triangle to the cosine of one of its angles.
Law of Tangents `\(\frac{a - b}{a + b} = \tan\left(\frac{A - B}{2}\right) \tan\left(\frac{A + B}{2}\right)\)` Relates the sides of a triangle to the tangents of half of its angles.

3.2 Advanced Identities

Identity Formula
Sine of the Sum of Three Angles `\(\sin(A + B + C) = \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C\)`
Cosine of the Sum of Three Angles `\(\cos(A + B + C) = \cos A \cos B \cos C - \sin A \sin B \cos C - \sin A \cos B \sin C - \cos A \sin B \sin C\)`

3.3 Euler’s Formula and Complex Trigonometry

`
Concept Formula
Euler's Formula `\(e^{i\theta} = \cos \theta + i \sin \theta\)`
Cosine in Exponential Form `\(\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}\)`
Sine in Exponential Form `\(\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}\)`

3.4 Hyperbolic Trigonometric Functions

` `
Concept Formula
Hyperbolic Sine `\(\sinh x = \frac{e^x - e^{-x}}{2}\)`
Hyperbolic Cosine `\(\cosh x = \frac{e^x + e^{-x}}{2}\)`
Hyperbolic Tangent `\(\tanh x = \frac{\sinh x}{\cosh x}\)`
Pythagorean Identity (Hyperbolic) `\(\cosh^2 x - \sinh^2 x = 1\)`
Identity Formula Description
Hyperbolic Identity ` \(1 - \tanh^2 x = \text{sech}^2 x\)` Relates hyperbolic tangent and hyperbolic secant functions.
Definition of Hyperbolic Tangent `\(\tanh x = \frac{\sinh x}{\cosh x}\)` Ratio of hyperbolic sine to hyperbolic cosine.
Definition of Hyperbolic Secant `\(\text{sech} x = \frac{1}{\cosh x}\)` Reciprocal of hyperbolic cosine.

3.5 Integration and Differentiation

`
Concept Formula
Derivative of Sine `\(\frac{d}{dx}[\sin x] = \cos x\)`
Derivative of Cosine `\(\frac{d}{dx}[\cos x] = -\sin x\)`
Integral of Sine `\(\int \sin x \, dx = -\cos x + C\)`
Integral of Cosine `\(\int \cos x \, dx = \sin x + C\)`
Integral of Secant Squared `\(\int \sec^2 x \, dx = \tan x + C\)`

3.6 Trigonometric Expansions

These formulas involve expanding products and powers of trigonometric functions.

Type Formula
Power Reduction Identity (Sine) `\(\sin^2 x = \frac{1 - \cos(2x)}{2}\)`
Power Reduction Identity (Cosine) `\(\cos^2 x = \frac{1 + \cos(2x)}{2}\)`
Power Reduction Identity (Tangent) `\(\tan^2 x = \frac{1 - \cos(2x)}{1 + \cos(2x)}\)`
Triple Angle Formula (Sine) `\(\sin(3x) = 3\sin x - 4\sin^3 x\)`
Triple Angle Formula (Cosine) `\(\cos(3x) = 4\cos^3 x - 3\cos x\)`
Triple Angle Formula (Tangent) `\(\tan(3x) = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}\)`
`

3.7 Cyclic Identities Summary Table

Type Identity
Sine Identity `\(\sin(A + B) + \sin(A - B) = 2 \sin A \cos B\)`
Cosine Identity `\(\cos(A + B) + \cos(A - B) = 2 \cos A \cos B\)`

3.8 Advanced Integration and Differentiation

Concept Formula
Reduction Formula (Sine) `\(\int \sin^n x \ dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx\)`
Reduction Formula (Cosine) `\(\int \cos^n x \ dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx\)`
Derivative of Inverse Sine `\(\frac{d}{dx}[\sin^{-1} x] = \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1\)`
Derivative of Inverse Cosine `\(\frac{d}{dx}[\cos^{-1} x] = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1\)`
Derivative of Inverse Tangent `\(\frac{d}{dx}[\tan^{-1} x] = \frac{1}{1 + x^2}\)`

3.9 Spherical Trigonometry Formulas

Law Formula
Spherical Law of Cosines `\(\cos c = \cos a \cos b + \sin a \sin b \cos C\)`
Spherical Law of Sines `\(\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}\)`

Spherical Trigonometry Formulas

( A, B, C ) are the angles of the spherical triangle.

( a, b, c ) are the lengths of the sides opposite to angles ( A, B, C ), respectively.

Angles Lengths
`sin"" 1/2 A = [(sin(s-b)sin(s-c))/ (sin b sin c)]^(1/2)` `sin"" 1/2 a = [(-cosS cos(S-A))/ (sin B sin C)]^(1/2)`
`cos"" 1/2 A = [(sin s sin(s-a))/ (sin b sin c)]^(1/2)` `cos"" 1/2 a = [(cos(S-B) cos(S-C))/ (sin B sin C)]^(1/2)`
`tan"" 1/2 A = [(sin(s-b)sin(s-c))/ (sin s sin(s-a))]^(1/2)` `tan"" 1/2 a = [(-cosS cos(S-A))/ (sin(S-B) cos(S-C))]^(1/2)`

3.10 Transformations in Trigonometry Formulas

`
Transformation Type Formula
Fourier Transform `\(f(t) = \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} \, d\omega\)`
Inverse Fourier Transform `\(F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt\)`
Wave Equation `\(y = A \sin(kx - \omega t + \phi)\)`

3.11 Higher Angle Identities Summary Table

Identity Type Formula
Quadruple Angle Formula (Sine) `\(\sin(4x) = 8 \sin x \cos^3 x - 4 \sin^3 x \cos x\)`
Quadruple Angle Formula (Cosine) `\(\cos(4x) = 8 \cos^4 x - 8 \cos^2 x + 1\)`
Quadruple Angle Formula (Tangent) `\(\tan(4x) = \frac{4 \tan x - 4 \tan^3 x}{1 - 6 \tan^2 x + \tan^4 x}\)`

3.12 Trigonometric Identities for Negative Angles Summary Table

Function Identity
Sine `\(\sin(-x) = -\sin x\)`
Cosine `\(\cos(-x) = \cos x\)`
Tangent `\(\tan(-x) = -\tan x\)`
Cosecant `\(\csc(-x) = -\csc x\)`
Secant `\(\sec(-x) = \sec x\)`
Cotangent `\(\cot(-x) = -\cot x\)`

3.13 Complex Argument Identities Summary Table

These are useful for functions of complex numbers or when analyzing periodic functions.

Function Identity
Sine `\(\sin(a + ib) = \sin a \cosh b + i \cos a \sinh b\)`
Cosine `\(\cos(a + ib) = \cos a \cosh b - i \sin a \sinh b\)`
Tangent `\(\tan(a + ib) = \frac{\sin(2a) + i \sinh(2b)}{\cos(2a) + \cosh(2b)}\)`

3.14 Trigonometric Forms in Geometry

Concept Formula
Area of Triangle `\(\text{Area} = \frac{1}{2}ab \sin C\)`
Circumradius `\(R = \frac{abc}{4\Delta}\)`
Inradius `\(r = \frac{\Delta}{s}\)`

3.15 Transformations and Scaling Summary Table

Concept Formula
Scaling of Sine and Cosine `\(A \sin x + B \cos x = R \sin(x + \phi)\)`
Resultant Amplitude `\(R = \sqrt{A^2 + B^2}\)`
Phase Shift `\(\tan \phi = \frac{B}{A}\)`
Damped Oscillation `\(y(t) = A e^{-\alpha t} \sin(\omega t + \phi)\)`

3.16 Specialized Trigonometric Relations Formula

Concept Formula
Barycentric Trigonometry (Sine) `\(\sin A = \frac{a}{2R}\)`
Barycentric Trigonometry (Cosine) `\(\cos A = \frac{b^2 + c^2 - a^2}{2bc}\)`
Napier's Analogies `\(\tan\left(\frac{A - B}{2}\right) = \frac{\sin(A - B)}{\cos(A + B) + \cos(A - B)}\)`

3.17 Infinite Product and Weierstrass Substitution Formulas

Concept Formula
Infinite Product for Sine `\(\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)\)`
Weierstrass Substitution `\(t = \tan\left(\frac{x}{2}\right)\)`
Sine w.r.t t `\(\sin x = \frac{2t}{1 + t^2}\)`
Cosine w.r.t t `\(\cos x = \frac{1 - t^2}{1 + t^2}\)`
Differential Transformation `\(dx = \frac{2 \, dt}{1 + t^2}\)`

About the author

D Shwari
I'm a professor at National University's Department of Computer Science. My main streams are data science and data analysis. Project management for many computer science-related sectors. Next working project on Al with deep Learning.....

Post a Comment